
Continuous integration,
package update mechanism

and release management
in GAP

Alexander Konovalov

GAP Days 2014, Aachen, 25-29 August

To users, package authors and
contributors to the core system

• A popular wisdom says that you can not get something which
is simultaneously

• reliable

• quickly delivered

• reasonably priced

• But we do really need:

• reliably tested software

• quick delivery cycle for bug fixes and new features

• reasonable efforts to maintain it

We should automate it!
http://imgs.xkcd.com/comics/automation.png

Toolkit overview

• GAP Standard Test Suite

• Nightly Jenkins tests

• Package update system

• Jenkins interface to the
package update system

• Wrapping and testing
the release candidate

• Publishing the release

GAP Standard test suite
• consists of 8 targets make test<name>, where name is one of the following

• install fast, uses tst/testinstall.g

• standard longer, uses tst/testall.g

• manuals extracts examples from manuals

• packages runs tests if they are specified in the PackageInfo.g file

• packagesload looks for failures, crashes and warnings while loading packages

• packagesvars reports package variables

• updates extracts and runs tests from dev/Updates entries (GAP.dev only)

• obsoletes performs some simple checks with obsoletes disabled

• could be run anywhere where GAP is installed - cleanly separated from Jenkins CI system

• Also, with gap -r -A tst/testinstall.g etc. (e.g. on Windows)

Nightly Jenkins tests
• test{install/standard/manuals/packagesload} :

• combinations of 32-bit/64-bit and with/without GMP

• CentOS Linux i686, x86_64; Ubuntu x86_64; OS X (darwin13.3.0);

• for the stable-4.7 and default branches

• For Windows, build it on a machine with Cygwin 32-bit, then run testinstall.g and testall.g
without and with default packages on a Cygwin-free machine (just started to look at Cygwin64)

• Compiler tests with -Werror to catch compiler warnings:

• 10 different compilers on 8 machines: gcc 4.1.2 and 4.6.3 (CentOS), 4.8.1 (OpenSUSE),
4.8.3 (cygwin and cygwin64; OS X via homebrew), 4.9.1 (Ubuntu 14), clang 3.3 (Ubuntu 12)
and 3.4 (OS X via Xcode)

• combinations of 32-bit/64-bit, with/without GMP, with/without readline

• for stable-4.7, default and integration branches

• compile and run testinstall.g without packages, check that is reached the end and had no
diffs

More details
• Demo: exploring the Jenkins interface

• Where are the scripts: Makefile and tst/testutil.g

• Where and what is documented

• GAP.dev manual

• Reference manual

• GAP package “Example”

Package update system
• Based on package release repositories!

• These are different from development versions of packages!

• They keep only the history of “official” releases (changesets are
just diffs between the releases)

• A version of a package may be marked as stable

• Easy to assemble merged packages archives giving a
specification and test it w.r.t. different branches

• for example, ./mergePackages latest io=3.1 FR=no orb=stable

Setting up package update system
• See dev/DistributionUpdate/dist45/pkgupdate directory

• Clone existing package release repositories

• Set environment variables in setvarpkg file

• Check URLs of PackageInfo.g files in the currentPackageInfoURLList file

• Call the following:

• ./addPackages currentPackageInfoURLList - to check for new/migrated
packages

• ./updatePackageInfoFiles - to check for updated PackageInfo.g files

• ./updatePackageArchives - to import package archives that pass some
initial checks (without actually running the package)

• May call reportPackageVersions script to get an overview

Package update steps
• The rest of the steps implemented in the dev/DistributionUpdate/

dist45/pkgupdate directory is required only at the release stage

• There is also storeLegacyPackage script to retrospectively import
old archives!

• Further info:

• ValidatePackageInfo in lib/package.gi and the Reference
manual

• GAP package “Example”

• Beware: GAP.dev manual on package update needs revision!

Package updates in Jenkins
• Scheduled in the morning on each weekday

• Produces merged archives for nightly tests and release
candidate wrapping

• Performs quick test (64-bit Linux with GMP) of this archive to
check for immediate issues, and some “non-matrix” tests

• Jenkins interface demo

Health check:!

• 60% updated since 2013

• 20% last updated in 2011-2013

• 3 packages 10+ years old

Compliance with failure detection
TestMyPackage := function(pkgname)
local pkgdir, testfiles, testresult, ff, fn;
LoadPackage(pkgname);
pkgdir := DirectoriesPackageLibrary(pkgname, "tst");
!
Arrange chapters as required
testfiles := ["testfile02.tst", "testfileb04.tst"];
!
testresult:=TestMyPackageDataLibrary();
!
for ff in testfiles do
 fn := Filename(pkgdir, ff);
 Print("#I Testing ", fn, "\n");
 if not Test(fn, rec(compareFunction := "uptowhitespace")) then
 testresult:=false;
 fi;
od;
if testresult then
 Print("#I No errors detected while testing package ", pkgname, "\n");
else
 Print("#I Errors detected while testing package ", pkgname, "\n");
fi;
end;

Wrapping and testing releases
• Done using Jenkins during weekends

• Produces update, minor and major release candidates

• Evaluating the tests and deciding to publish archives

• For us, it is the other way round:

• “We have too little updates for new release”

• “OK, let’s move the release to a later date”

Steps of release wrapping
• Several cleanly separated stages with archives as

interfaces between them

• Steps may be separated in time and space

• Not tied up to Jenkins at all: may run anywhere, even on
a laptop offline

• Only the 1st step depends on the version control system,
and may be rewritten if we will switch to another VCS

• See dev/DistributionUpdate/dist45 directory

Release wrapping scripts
• See dev/DistributionUpdate/dist45 directory

• There are three targets make update/minor/major to wrap the
release respectively from:

• last release tag in the stable branch (update release)

• tip of the stable branch (minor release, e.g. 4.7.6)

• tip of the default branch (major release, e.g. 4.8.0)

• each of them reads version numbers from setvarupdate/
setvarminor/setvarmajor script respectively, and then calls the
doit script

How-to doit
• What dev/DistributionUpdate/dist45/doit script does:!

• Stage 1: checkout and archive the release branch!
• setvar - load environment variables (paths, version numbers etc.)!
• checkouthg - make a fresh clone of the the repository !
• classifyfiles - classify files into {text/binary}x{release/tools} or not shipped!
• zipreleasebranch - wraps core system and tools archives!
• zipmetainfo - wraps metadata!

• Stage 2: preparing the GAP core system!
• unpackreleasebranch - unpacks archives produced at step 1!
• updateversioninfo - insert version number, release date and other depending info!
• fixpermissions - dirs to 755, files to 644 and some executables to 755!
• zipgapcore - wraps gap core system and tools archives!
• updatemetainfo - wraps updated metadata!

• Stage 3: merge GAP core with packages!
• unpackgapcore - unpacks archives produced at step 2!
• unpackpackages - unpack the merged packages archive from package update system!
• checkpermissions - check permissions for the content of the pkg subdirectory!
• makedoc - build main GAP manuals (tut/ref/changes)!
• addmanualfiles - adding the list of manual files to the metadata!
• zipgapsourcedistro - wrap GAP source distribution!
• finalisemetainfo - wrap metadata

Release publishing steps
• Evaluate results of regression tests

• Copy archives of the Gap source distribution to the GAP ftp server - now release is PUBLISHED!

• Prepare individual archives for stable packages and copy them to ftp as well:

• Using markAllLatestStable script to mark all or markStableRevisions to mark several packages at a
time, set “stable” bookmark (which may be removed with “hg bookmark —delete …” command)

• For each stable release, set a bookmark with the timestamp of the GAP source distribution that contains
it, e.g. with markAllStableWithTimestamp gap4r7p6_2014_08_24-12_12!

• In doubt, use reportPackageVersions to check!

• Call ./mergePackages all stable to wrap individual package archives (use “<pkgname>=no” if needed)

• Call ./updatePackageDocs and ./writePackageWebInfos to update package documentation and generate
data for package pages using their PackageInfo.g files

• Call ./CopyToFtpServer to copy individual package archives to the ftp server and ./CopyToWWW2 to copy
the autogenerated data to a clone of the GAP website repository

• Copy manuals of updated packages to the public or testing website

• This is documented in the GAP.dev manual: see Chapter “Preparing GAP Releases”, Section “Releasing a
new version”

Prepare the website
• Archives made public => we have the release. Version

number can not be re-used!

• Have to update the GAP Website

• This is documented in the GAP.dev manual: see Chapter
“Preparing GAP Releases”, Section “Releasing a new
version”

• More general description of the GAP website is
contained there in the chapter “Maintaining the GAP
website”

Spread the word!
• Made the updated GAP website live (bin/updateGapWWW.sh on yin)

• Produce alternative distributions (http://www.gap-system.org/Download/
index.html#alternatives)

• rsync-based - for Linux; BOB - for Linux and OS X; Windows Installer

• Announce in the Forum (for major releases - wait for alternative installers to be available too)

• Update package dependencies diagram:

http://alexk.host.cs.st-andrews.ac.uk/gap/GAP_Packages.html

• Hope to eventually see this version cited at Google Scholar (capable of tracking citations by
version): http://bit.ly/gap_citations

• Provide platform for recomputable experiments at recomputation.org

• Support users and encourage them to upgrade in GAP Forum, GAP Support, and also at
Mathematics Q&A site from the StackExchange framework:

http://math.stackexchange.com/questions/tagged/gap

• Tweet at http://twitter.com/gap_system

http://www.gap-system.org/Download/index.html#alternatives
http://alexk.host.cs.st-andrews.ac.uk/gap/GAP_Packages.html
http://bit.ly/gap_citations
http://recomputation.org
http://math.stackexchange.com/questions/tagged/gap
http://twitter.com/gap_system

Recomputation.org

Recomputation Manifesto by Ian Gent (arXiv:1304.3674)
•Computational experiments should be persistent
•Their recomputation should be very easy, supported by tools
and repositories, so it should be easier to make experiments
recomputable than not to

•Virtual machines as the way to recomputability

Install Vagrant and Virtual Box	
mkdir anydir ; cd anydir	
vagrant init <experiment_id> <URL>	
vagrant up

See http://recomputation.org/ecai2014/

It should be as easy to reproduce a
computational experiment as to
reproduce the chemical reaction
from a textbook by mixing baking
soda and lemon juice in the kitchen

http://recomputation.org/ecai2014/

Suggestions for today
• Explore all of these in more details

• See what could be improved

• Evaluate the latest release candidates for GAP 4.7.6 and GAP 4.8

• Explore release publishing process

• Look at regression tests for HPC-GAP

• Learn how to find needed information using Jenkins

• Learn how to edit GAP website and try to made some
improvements

• ???

