Johannes Hahn

Friedrich-Schiller-Universität Jena

25.08.2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Johannes Hahn

Mathematics

Code goals

Isn't this already in GAP??

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Yes, but only in GAP3 as the CHEVIE package.

Johannes Hahn

Mathematics

Code goals

Isn't this already in GAP??

- Yes, but only in GAP3 as the CHEVIE package.
- One of the still-active parts of GAP3 ⇒ ongoing divergence with further development of GAP4

Johannes Hahn

Mathematics

Code goals

Isn't this already in GAP??

- Yes, but only in GAP3 as the CHEVIE package.
- One of the still-active parts of GAP3 ⇒ ongoing divergence with further development of GAP4
- · No high level objects, no method selection, ...

Johannes Hahn

Mathematics

Code goals

Isn't this already in GAP??

- Yes, but only in GAP3 as the CHEVIE package.
- One of the still-active parts of GAP3 ⇒ ongoing divergence with further development of GAP4
- No high level objects, no method selection, ...
- No support for multiparameter case

Johannes Hahn

Mathematics

Code goals

Coxeter groups

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

(W, S) is called a Coxeter system or Coxeter group iff

$$m{W} = \langle m{S} | orall m{s}, t \in m{S} : (m{s}t)^{m_{m{s}t}} = m{1}
angle$$

for some symmetric matrix $(m_{st}) \in \mathbb{N}^{S \times S}$ with $m_{st} = 1 \iff s = t$.

Johannes Hahn

Mathematics

Code goals

Coxeter groups

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Definition

(W, S) is called a Coxeter system or Coxeter group iff

$$W = \langle S | \forall s, t \in S : (st)^{m_{st}} = 1 \rangle$$

for some symmetric matrix $(m_{st}) \in \mathbb{N}^{S \times S}$ with $m_{st} = 1 \iff s = t$.

Examples include

- Sym(n) with $S = \{ (12), (23), \dots, (n-1, n) \}$
- dihedral groups
- Binary icosahedral group 2 · Alt(5)
- Weyl groups of algebraic groups, Lie groups, Kac-Moody groups, groups with BN-pair, ...

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

(日)

 Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

(日)

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
- · Efficient solution difficult (but possible)

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
 - · Efficient solution difficult (but possible)
 - · Very efficient special cases:

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
- · Efficient solution difficult (but possible)
- · Very efficient special cases:
 - Finite groups as permutation groups

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
 - · Efficient solution difficult (but possible)
 - · Very efficient special cases:
 - Finite groups as permutation groups
 - So called crystallographic groups as matrix groups over integers

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
 - · Efficient solution difficult (but possible)
 - · Very efficient special cases:
 - Finite groups as permutation groups
 - So called crystallographic groups as matrix groups over integers
 - In principle: All Coxeter groups as matrix groups over some finite, real, abelian extension of Q. Necessary: Efficient decision whether a real cyclotomic is positive or negative (contained in future package FUTILS by F.Lübeck)

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
 - · Efficient solution difficult (but possible)
 - · Very efficient special cases:
 - Finite groups as permutation groups
 - So called crystallographic groups as matrix groups over integers
 - In principle: All Coxeter groups as matrix groups over some finite, real, abelian extension of Q. Necessary: Efficient decision whether a real cyclotomic is positive or negative (contained in future package FUTILS by F.Lübeck)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

· Finite Coxeter groups classified:

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
 - · Efficient solution difficult (but possible)
 - · Very efficient special cases:
 - Finite groups as permutation groups
 - So called crystallographic groups as matrix groups over integers
 - In principle: All Coxeter groups as matrix groups over some finite, real, abelian extension of Q. Necessary: Efficient decision whether a real cyclotomic is positive or negative (contained in future package FUTILS by F.Lübeck)

- Finite Coxeter groups classified:
 - · Direct products of indecomposables

Johannes Hahn

Mathematics

Code goals

Computation with Coxeter groups

- Word problem for Coxeter groups solvable, normal form for elements (Tits' theorem, ...)
 - · Efficient solution difficult (but possible)
 - · Very efficient special cases:
 - · Finite groups as permutation groups
 - So called crystallographic groups as matrix groups over integers
 - In principle: All Coxeter groups as matrix groups over some finite, real, abelian extension of Q. Necessary: Efficient decision whether a real cyclotomic is positive or negative (contained in future package FUTILS by F.Lübeck)
 - Finite Coxeter groups classified:
 - · Direct products of indecomposables
 - Indecomposable: A_n , B_n (= C_n), D_n , E_6 , E_7 , E_8 , F_4 , G_2 , H_3 , H_4 , $I_2(m)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Johannes Hahn

Mathematics

Code goals

What the code does so far

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Generating Coxeter groups

Johannes Hahn

Mathematics

Code goals

What the code does so far

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

· As parabolic subgroups of other Coxeter groups

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers

- As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers

- As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - Left/right descent sets

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers

- As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - Left/right descent sets
 - Length function

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers

- As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - Left/right descent sets
 - Length function
- Space efficient iteration through the group

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers

- As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - · Left/right descent sets
 - Length function
- Space efficient iteration through the group
- Bruhat-Chevalley order

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers
 - As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - · Left/right descent sets
 - Length function
- · Space efficient iteration through the group
- Bruhat-Chevalley order
- Computes Kazhdan-Lusztig polynomials *P_{xy}* of pairs of group elements

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers
 - As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - Left/right descent sets
 - Length function
- Space efficient iteration through the group
- Bruhat-Chevalley order
- Computes Kazhdan-Lusztig polynomials P_{xy} of pairs of group elements

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- Recursive computation together with $\mu_{\rm XV}^s$ values

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers
 - As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - · Left/right descent sets
 - Length function
- · Space efficient iteration through the group
- Bruhat-Chevalley order
- Computes Kazhdan-Lusztig polynomials *P_{xy}* of pairs of group elements

- Recursive computation together with μ_{xy}^s values
- but not *R*-polynomials

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers
 - As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - Left/right descent sets
 - Length function
- · Space efficient iteration through the group
- Bruhat-Chevalley order
- Computes Kazhdan-Lusztig polynomials *P_{xy}* of pairs of group elements

- Recursive computation together with μ_{xy}^s values
- but not *R*-polynomials
- · Critical pairs

Johannes Hahn

Mathematics

Code goals

What the code does so far

- Generating Coxeter groups
 - Finite: By classification, as permutation groups on their root systems
 - Infinite: Crystallographic groups by a Cartan matrix, as matrix groups over integers
 - As parabolic subgroups of other Coxeter groups
- · Elementary arithmetic with group elements
 - · Left/right descent sets
 - Length function
- Space efficient iteration through the group
- Bruhat-Chevalley order
- Computes Kazhdan-Lusztig polynomials *P_{xy}* of pairs of group elements

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Recursive computation together with μ_{xy}^s values
- but not *R*-polynomials
- Critical pairs
- Left cells for finite groups

Johannes Hahn

Mathematics

Code goals

What it should do but doesn't (yet)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Weighted Coxeter groups with arbitrary weight functions

Johannes Hahn

Mathematics

Code goals

What it should do but doesn't (yet)

- · Weighted Coxeter groups with arbitrary weight functions
- Multivariate Kazhdan-Lusztig polynomials

Johannes Hahn

Mathematics

Code goals

What it should do but doesn't (yet)

- · Weighted Coxeter groups with arbitrary weight functions
- Multivariate Kazhdan-Lusztig polynomials
- So far: Still buggy

Johannes Hahn

Mathematics

Code goals

What it could do in the future

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

 Automatic recognition of classification type of finite Coxeter groups

Johannes Hahn

Mathematics

Code goals

What it could do in the future

(日)

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - · Creation by a root datum

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

· Iterators for Bruhat intervals

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups
 - · Iterators for Bruhat intervals
 - · All things connected to roots, coroots, weights, chambers, ...

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups
 - · Iterators for Bruhat intervals
 - · All things connected to roots, coroots, weights, chambers, ...

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Hecke algebras

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups
 - · Iterators for Bruhat intervals
 - · All things connected to roots, coroots, weights, chambers, ...

- Hecke algebras
 - · Representations and characters of Hecke algebras

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups
 - · Iterators for Bruhat intervals
 - · All things connected to roots, coroots, weights, chambers, ...

- Hecke algebras
 - · Representations and characters of Hecke algebras
 - In particular: W-graph representations

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups
 - · Iterators for Bruhat intervals
 - · All things connected to roots, coroots, weights, chambers, ...

- Hecke algebras
 - · Representations and characters of Hecke algebras
 - In particular: W-graph representations
 - · (partially implemented but far from pretty)

Johannes Hahn

Mathematics

Code goals

What it could do in the future

- Automatic recognition of classification type of finite Coxeter groups
- Arbitrary Coxeter groups
 - Direct arithmetic with words or matrices over cyclotomics
 - Creation by a root datum
- More combinatorics
 - · Direct access to left/right weak Bruhat orders
 - Iterators for cosets (and double?) cosets of parabolic subgroups
 - · Iterators for Bruhat intervals
 - · All things connected to roots, coroots, weights, chambers, ...

- Hecke algebras
 - · Representations and characters of Hecke algebras
 - In particular: W-graph representations
 - (partially implemented but far from pretty)
- What else?