Constructing Graphs by Voltage Assignment

Hebert Pérez-Rosés 1,2

¹Department of Mathematics University of Lleida, Spain

²Conjoint fellow Dept. Software Eng. and Comp. Science *The* University *of* Newcastle, Australia

GAP days 2014

< 3

Voltage Assignment

2 The Degree–Diameter Problem

3 GAP Implementation

< ∃⇒

4 A N

- Given a digraph G = (V, A), and a finite group Γ, a voltage assignment of G in Γ is a function α : A → Γ, that labels the arcs of G with elements of Γ.
- The **derived graph** (lift, or **covering**) G' = (V', A') (also denoted G^{α}), is constructed as follows:
 - $V' = V \times \Gamma$, and $A' = A \times \Gamma$
 - If $a = (v, w) \in A$, then $(a, g) = a_g = (v_g, w_{g\alpha(a)}) \in A$

→ ∃ → < ∃ →</p>

- Given a digraph G = (V, A), and a finite group Γ, a voltage assignment of G in Γ is a function α : A → Γ, that labels the arcs of G with elements of Γ.
- The **derived graph** (lift, or covering) G' = (V', A') (also denoted G^{α}), is constructed as follows:

- 4 回 ト 4 回 ト

- Given a digraph G = (V, A), and a finite group Γ, a voltage assignment of G in Γ is a function α : A → Γ, that labels the arcs of G with elements of Γ.
- The **derived graph** (lift, or covering) G' = (V', A') (also denoted G^{α}), is constructed as follows:

•
$$V' = V \times \Gamma$$
, and $A' = A \times \Gamma$

• If $a = (v, w) \in A$, then $(a, g) = a_g = (v_g, w_{g\alpha(a)}) \in A'$

→ ∃ → < ∃ →</p>

- Given a digraph G = (V, A), and a finite group Γ, a voltage assignment of G in Γ is a function α : A → Γ, that labels the arcs of G with elements of Γ.
- The **derived graph** (lift, or covering) G' = (V', A') (also denoted G^{α}), is constructed as follows:

•
$$V' = V \times \Gamma$$
, and $A' = A \times \Gamma$

• If $a = (v, w) \in A$, then $(a, g) = a_g = (v_g, w_{g\alpha(a)}) \in A'$

- E

Example 1: Voltages in \mathbb{Z}_3

H. Pérez-Rosés (Lleida, Spain)

GAP days 2014 4 / 24

2

★週 ▶ ★ 国 ▶ ★ 国 ▶

500

Example 1: Collapsing mutually reverse arcs

H. Pérez-Rosés (Lleida, Spain)

Voltage assignment

GAP days 2014 5 / 24

Example 2: Cayley graphs (voltages in \mathbb{Z}_6)

H. Pérez-Rosés (Lleida, Spain)

Voltage assignment

GAP days 2014 6 / 24

э

< E

< 17 ▶

Some elementary properties

• The **net voltage** of a walk *W* in *G* is the product of the voltages of every edge in the *W*

- Every cycle C' of G' corresponds to a closed non-reversing walk W in G, with net voltage equal to the identity of Γ
- The girth of *G*' is equal to the length of the shortest closed non-reversing walk *W* of *G*, with net voltage equal to the identity
- The local group at vertex v is the group generated by the net voltages of all closed walks based at v. G' is connected if and only if the local group at every vertex v is equal to Γ.

> < ≣⇒

- The **net voltage** of a walk *W* in *G* is the product of the voltages of every edge in the *W*
- Every cycle C' of G' corresponds to a closed non-reversing walk
 W in G, with net voltage equal to the identity of Γ
- The girth of *G*' is equal to the length of the shortest closed non-reversing walk *W* of *G*, with net voltage equal to the identity
- The local group at vertex v is the group generated by the net voltages of all closed walks based at v. G' is connected if and only if the local group at every vertex v is equal to Γ.

▶ < ⊒ >

- The **net voltage** of a walk *W* in *G* is the product of the voltages of every edge in the *W*
- Every cycle C' of G' corresponds to a closed non-reversing walk
 W in G, with net voltage equal to the identity of Γ
- The girth of G' is equal to the length of the shortest closed non-reversing walk W of G, with net voltage equal to the identity
- The local group at vertex ν is the group generated by the net voltages of all closed walks based at ν. G' is connected if and only if the local group at every vertex ν is equal to Γ.

- ∢ ⊒ →

- The **net voltage** of a walk *W* in *G* is the product of the voltages of every edge in the *W*
- Every cycle C' of G' corresponds to a closed non-reversing walk
 W in G, with net voltage equal to the identity of Γ
- The girth of G' is equal to the length of the shortest closed non-reversing walk W of G, with net voltage equal to the identity
- The local group at vertex ν is the group generated by the net voltages of all closed walks based at v. G' is connected if and only if the local group at every vertex v is equal to Γ.

- E

• $N_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$ (Moore bound)

 Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of △ and D

• Main research directions:

- Obtain sharper upper bounds
- Construct larger graphs

• $N_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$ (Moore bound)

 Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of △ and D

• Main research directions:

- Obtain sharper upper bounds
- Construct larger graphs

b) A = b

• $N_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$ (Moore bound)

- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of △ and D
- Main research directions:
 - Obtain sharper upper bounds
 - Construct larger graphs

• $N_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$ (Moore bound)

- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of △ and D
- Main research directions:
 - Obtain sharper upper bounds
 - Construct larger graphs

• $N_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$ (Moore bound)

- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of △ and D
- Main research directions:
 - Obtain sharper upper bounds
 - Construct larger graphs

• $N_{\Delta,D} \leq 1 + \Delta + \Delta(\Delta - 1) + \dots + \Delta(\Delta - 1)^{D-1}$ (Moore bound)

- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of △ and D
- Main research directions:
 - Obtain sharper upper bounds
 - Construct larger graphs

Largest Known Graphs (combinatoricswiki.org)

d∖k	2	3	4	5	6	7	8	9	10
3	10	20	38	70	132	196	336	600	1 250
4	15	41	96	364	740	1 320	3 243	7 575	17 703
5	24	72	210	624	2 772	5 516	17 030	57 840	187 056
6	32	110	390	1 404	7 917	19 383	76 461	307 845	1 253 615
7	50	168	672	2 756	11 988	52 768	249 660	1 223 050	6 007 230
8	57	253	1 100	5 060	39 672	131 137	734 820	4 243 100	24 897 161
9	74	585	1 550	8 200	75 893	279 616	1 686 600	12 123 288	65 866 350
10	91	650	2 286	13 140	134 690	583 083	4 293 452	27 997 191	201 038 922
11	104	715	3 200	19 500	156 864	1 001 268	7 442 328	72 933 102	600 380 000
12	133	786	4 680	29 470	359 772	1 999 500	15 924 326	158 158 875	1 506 252 500
13	162	851	6 560	40 260	531 440	3 322 080	29 927 790	249 155 760	3 077 200 700
14	183	916	8 200	57 837	816 294	6 200 460	55 913 932	600 123 780	7 041 746 081
15	186	1 215	11 712	76 518	1 417 248	8 599 986	90 001 236	1 171 998 164	10 012 349 898
16	198	1 600	14 640	132 496	1 771 560	14 882 658	140 559 416	2 025 125 476	12 951 451 931
17	274	1 610	19 040	133 144	3 217 872	18 495 162	220 990 700	3 372 648 954	15 317 070 720
18	307	1 620	23 800	171 828	4 022 340	26 515 120	323 037 476	5 768 971 167	16 659 077 632
19	338	1 638	23 970	221 676	4 024 707	39 123 116	501 001 000	8 855 580 344	18 155 097 232
20	381	1 958	34 952	281 820	8 947 848	55 625 185	762 374 779	12 951 451 931	78 186 295 824

H. Pérez-Rosés (Lleida, Spain)

GAP days 2014 9 / 24

2

Voltage assignment (analytic and computer-based) - 53%

- a Graph compounding 15%
- Polarity graphs of generalized polygons 12%
- Other computer-based techniques 9%
- Moore graphs and others 11%

Voltage assignment (analytic and computer-based) - 53%
Graph compounding - 15%

Polarity graphs of generalized polygons - 12%

Other computer-based techniques - 9%

Moore graphs and others - 11%

- Voltage assignment (analytic and computer-based) 53%
- In the second second
- Polarity graphs of generalized polygons 12%
- Other computer-based techniques 9%
- Moore graphs and others 11%

- Voltage assignment (analytic and computer-based) 53%
- In the second second
- Polarity graphs of generalized polygons 12%
- Other computer-based techniques 9%
 - Moore graphs and others 11%

- Voltage assignment (analytic and computer-based) 53%
- In the second second
- Polarity graphs of generalized polygons 12%
- Other computer-based techniques 9%
- Moore graphs and others 11%

Choose a base graph G and a family of groups Ω , and initialize MAX; Label the arcs of a BFS spanning tree of the base graph G with the identity element;

for every unexplored group Γ in Ω do for i:=1 to MAX do begin generate a random voltage assignment α ; compute the girth and diameter of G'; if diameter $\leq k$ then begin save Γ and α ; break; end; end;

= nar

・ロト ・四ト ・ヨト ・ヨト

The 'less abelian' a group is, the better

- The groups that have been used more extensively are $\mathbb{Z}_m \rtimes_r \mathbb{Z}_n$, $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes_r \mathbb{Z}_n$, and $(\mathbb{Z}_m \rtimes_r \mathbb{Z}_n) \rtimes (\mathbb{Z}_m \rtimes_r \mathbb{Z}_n)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group Γ is perfect if it equals its commutator (or derived) subgroup [Γ, Γ]. E.g. SL(2,5)

- The 'less abelian' a group is, the better
- The groups that have been used more extensively are $\mathbb{Z}_m \rtimes_r \mathbb{Z}_n$, $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes_r \mathbb{Z}_n$, and $(\mathbb{Z}_m \rtimes_r \mathbb{Z}_n) \rtimes (\mathbb{Z}_m \rtimes_r \mathbb{Z}_n)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group Γ is perfect if it equals its commutator (or derived) subgroup [Γ, Γ]. E.g. SL(2,5)

- The 'less abelian' a group is, the better
- The groups that have been used more extensively are $\mathbb{Z}_m \rtimes_r \mathbb{Z}_n$, $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes_r \mathbb{Z}_n$, and $(\mathbb{Z}_m \rtimes_r \mathbb{Z}_n) \rtimes (\mathbb{Z}_m \rtimes_r \mathbb{Z}_n)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group Γ is perfect if it equals its commutator (or derived) subgroup [Γ, Γ]. E.g. SL(2,5)

- The 'less abelian' a group is, the better
- The groups that have been used more extensively are $\mathbb{Z}_m \rtimes_r \mathbb{Z}_n$, $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes_r \mathbb{Z}_n$, and $(\mathbb{Z}_m \rtimes_r \mathbb{Z}_n) \rtimes (\mathbb{Z}_m \rtimes_r \mathbb{Z}_n)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group Γ is perfect if it equals its commutator (or derived) subgroup [Γ, Γ]. E.g. SL(2,5)

• Package GRAPE, by Leonard Soicher

- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

- A - TH

< 4 →

• Package GRAPE, by Leonard Soicher

- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

- E

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

- E

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

Graph data structure: Adjacency list

- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function Lift, to perform the voltage assignment construction
 - Function DirectedCayDiameter: Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function UndirectedCayDiameter: the same, for undirected Cayley graphs
 - Various input/output functions

イロト イヨト イヨト イヨト

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function Lift, to perform the voltage assignment construction
 - Function DirectedCayDiameter: Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function UndirectedCayDiameter: the same, for undirected Cayley graphs
 - Various input/output functions

< ロ > < 同 > < 回 > < 回 >

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function *Lift*, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*: the same, for undirected Cayley graphs
 - Various input/output functions

3 > 4 3

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function *Lift*, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*: the same, for undirected Cayley graphs
 - Various input/output functions

3 > 4 3

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function *Lift*, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*: the same, for undirected Cayley graphs
 - Various input/output functions

- A - TH

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function *Lift*, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*: Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*. the same, for undirected Cayley graphs
 - Various input/output functions

- A - TH

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function Lift, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*: the same, for undirected Cayley graphs
 - Various input/output functions

- A - TH

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function Lift, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*. the same, for undirected Cayley graphs
 - Various input/output functions

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function Lift, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*. the same, for undirected Cayley graphs
 - Various input/output functions

- Graph data structure: Adjacency list
- Group specification
- Functions:
 - Traversals: BFS and DFS
 - Function Diameter, to compute the diameter of a directed graph
 - Function Lift, to perform the voltage assignment construction
 - Function *DirectedCayDiameter*. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
 - Function *UndirectedCayDiameter*. the same, for undirected Cayley graphs
 - Various input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

イロト イヨト イヨト イヨト

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

A (10) A (10) A (10)

• Euler to/from Matgraph's SGF

- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R ?

< 17 ▶

- ★ 臣 ▶ - ★ 臣

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

< 47 ▶

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R ?

< 47 ▶

< E

< ∃ ►

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

< 3

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

-

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats
 - Sage ?
 - Mathematica ?
 - R?

Network layout with Gephi

H. Pérez-Rosés (Lleida, Spain)

Recall Example 1

```
Gamma:= CyclicGroup(3);
LGamma:= List(Gamma);
vgrafo:= [ [ [ 2 ], [ LGamma[1] ] ],
       [ [ 1, 2 ], [ LGamma[1], LGamma[2] ] ] ];
```

[[4], [5], [6], [1,5], [2,6], [3,4]]

3

イロト 不得 トイヨト イヨト

Improve data structures

• Functions for:

- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assignment that produces a lift of minimal diameter
- Implement the random voltage search

 Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

ヘロト 人間 ト 人 ヨ ト 人 ヨ

Improve data structures

Functions for:

- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assignment that produces a lift of minimal diameter
- Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

- Improve data structures
- Functions for:
 - Basic graph operations (girth, connectivity, graph products, etc.)
 - Estimating the diameter of a large directed non-symmetric graph
 - Find the voltage assignment that produces a lift of minimal diameter
 - Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

- Improve data structures
- Functions for:
 - Basic graph operations (girth, connectivity, graph products, etc.)
 - Estimating the diameter of a large directed non-symmetric graph
 - Find the voltage assignment that produces a lift of minimal diameter
 - Implement the random voltage search

 Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

- Improve data structures
- Functions for:
 - Basic graph operations (girth, connectivity, graph products, etc.)
 - Estimating the diameter of a large directed non-symmetric graph
 - Find the voltage assignment that produces a lift of minimal diameter
 - Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

- Improve data structures
- Functions for:
 - Basic graph operations (girth, connectivity, graph products, etc.)
 - Estimating the diameter of a large directed non-symmetric graph
 - Find the voltage assignment that produces a lift of minimal diameter
 - Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

- Improve data structures
- Functions for:
 - Basic graph operations (girth, connectivity, graph products, etc.)
 - Estimating the diameter of a large directed non-symmetric graph
 - Find the voltage assignment that produces a lift of minimal diameter
 - Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

```
Gamma:= CyclicGroup(3);
LGamma:= List(Gamma);
nverts:= 2;
narcs:= 4;
LArcs:= [ [1,2], [2,1], [2,2] ];
alpha:= [ LGamma[1], LGamma[1], LGamma[2] ];
```

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

- ∢ ≣ →

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

- < ⊒ →

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

< E

```
a:=AbstractGenerator("a");
b:=AbstractGenerator("b");
c:=AbstractGenerator("c");
```

```
Gens:=[a,b,c];
```

```
Rels:= [[a^3, IdWord], [b^2, IdWord], [c^2, IdWord],
    [b*a*b, a^2*b*a^2], [b*a^2*b, a*b*a],
    [c*a, a^2*c], [c*b*c, b*c*b],
    [c*b*a*c, b*c*b*a^2], [c*b*a^2*c, b*c*b*a]];
```



```
F:= FreeGroup("a", "b", "c");
a:= F.1;
b:= F.2;
c:= F.3;
```

```
IdWord:= One(F);
```

```
Rels:= [[a^3, IdWord], [b^2, IdWord], [c^2, IdWord],
      [b*a*b, a^2*b*a^2], [b*a^2*b, a*b*a],
      [c*a, a^2*c], [c*b*c, b*c*b],
      [c*b*a*c, b*c*b*a^2], [c*b*a^2*c, b*c*b*a]];
```


J.L.Gross and T.W.Tucker: Topological Graph Theory. John Wiley & Sons, 1987.

L.H. Soicher: "Computing with graphs and groups".

🔈 L.H. Soicher: GRAPE Manual.

< 回 ト < 三 ト < 三

- J.L.Gross and T.W.Tucker: Topological Graph Theory. John Wiley & Sons, 1987.
- L.H. Soicher: "Computing with graphs and groups". In Topics in Algebraic Graph Theory (L.W. Beineke and R.J. Wilson, eds). Cambridge Univ. Press, 2004, pp. 250-266.

🕨 L.H. Soicher: GRAPE Manual.

- J.L.Gross and T.W.Tucker: Topological Graph Theory. John Wiley & Sons, 1987.
- L.H. Soicher: "Computing with graphs and groups". In Topics in Algebraic Graph Theory (L.W. Beineke and R.J. Wilson, eds). Cambridge Univ. Press, 2004, pp. 250-266.
- 🛸 L.H. Soicher: GRAPE Manual.

http://www.gap-system.org/Packages/grape.html.

- E

H. Pérez-Rosés (Lleida, Spain)