Constructing Graphs by Voltage Assignment

Hebert Pérez-Rosés ${ }^{1,2}$
${ }^{1}$ Department of Mathematics
University of Lleida, Spain
${ }^{2}$ Conjoint fellow
Dept. Software Eng. and Comp. Science
The University of Newcastle, Australia
GAP days 2014

Outline

(1) Voltage Assignment
(2) The Degree-Diameter Problem
(3) GAP Implementation

4 Bibliography

Voltage graphs

- Given a digraph $G=(V, A)$, and a finite group Γ, a voltage assignment of G in Γ is a function $\alpha: A \rightarrow \Gamma$, that labels the arcs of G with elements of Γ.
- The derived graph (lift, or covering) $G^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ (also denoted G^{α}), is constructed as follows:

Voltage graphs

- Given a digraph $G=(V, A)$, and a finite group Γ, a voltage assignment of G in Γ is a function $\alpha: A \rightarrow \Gamma$, that labels the arcs of G with elements of Γ.
- The derived graph (lift, or covering) $G^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ (also denoted G^{α}), is constructed as follows:

$$
\text { - If } a=(v, w) \in A \text {, then }(a, g)=a_{g}=\left(v_{g}, w_{g \alpha(a)}\right) \in A^{\prime}
$$

Voltage graphs

- Given a digraph $G=(V, A)$, and a finite group Γ, a voltage assignment of G in Γ is a function $\alpha: A \rightarrow \Gamma$, that labels the arcs of G with elements of Γ.
- The derived graph (lift, or covering) $G^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ (also denoted G^{α}), is constructed as follows:
- $V^{\prime}=V \times \Gamma$, and $A^{\prime}=A \times \Gamma$
- If $a=(v, w) \in A$, then $(a, g)=a_{g}=\left(v_{g}, w_{g \alpha(a)}\right) \in A^{\prime}$

Voltage graphs

- Given a digraph $G=(V, A)$, and a finite group Γ, a voltage assignment of G in Γ is a function $\alpha: A \rightarrow \Gamma$, that labels the arcs of G with elements of Γ.
- The derived graph (lift, or covering) $G^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ (also denoted G^{α}), is constructed as follows:
- $V^{\prime}=V \times \Gamma$, and $A^{\prime}=A \times \Gamma$
- If $a=(v, w) \in A$, then $(a, g)=a_{g}=\left(v_{g}, w_{g \alpha(a)}\right) \in A^{\prime}$

Example 1: Voltages in \mathbb{Z}_{3}

- Return to GAP session

Example 1: Collapsing mutually reverse arcs

Example 2: Cayley graphs (voltages in \mathbb{Z}_{6})

Some elementary properties

- The net voltage of a walk W in G is the product of the voltages of every edge in the W
- Every cycle C^{\prime} of G^{\prime} corresponds to a closed non-reversing walk W in G, with net voltage equal to the identity of Γ
- The girth of G^{\prime} is equal to the length of the shortest closed non-reversing walk W of G, with net voltage equal to the identity
- The local group at vertex v is the group generated by the net voltages of all closed walks based at $v . G^{\prime}$ is connected if and only if the local group at every vertex v is equal to Γ.

Some elementary properties

- The net voltage of a walk W in G is the product of the voltages of every edge in the W
- Every cycle C^{\prime} of G^{\prime} corresponds to a closed non-reversing walk W in G, with net voltage equal to the identity of Γ
- The girth of G^{\prime} is equal to the length of the shortest closed non-reversing walk W of G, with net voltage equal to the identity
- The Iocal group at vertex v is the group generated by the net voltages of all closed walks based at $v . G^{\prime}$ is connected if and only if the local group at every vertex v is equal to Γ.

Some elementary properties

- The net voltage of a walk W in G is the product of the voltages of every edge in the W
- Every cycle C^{\prime} of G^{\prime} corresponds to a closed non-reversing walk W in G, with net voltage equal to the identity of Γ
- The girth of G^{\prime} is equal to the length of the shortest closed non-reversing walk W of G, with net voltage equal to the identity
- The local group at vertex v is the group generated by the net voltages of all closed walks based at $v . G^{\prime}$ is connected if and only if the local group at every vertex v is equal to Γ.

Some elementary properties

- The net voltage of a walk W in G is the product of the voltages of every edge in the W
- Every cycle C^{\prime} of G^{\prime} corresponds to a closed non-reversing walk W in G, with net voltage equal to the identity of Γ
- The girth of G^{\prime} is equal to the length of the shortest closed non-reversing walk W of G, with net voltage equal to the identity
- The local group at vertex v is the group generated by the net voltages of all closed walks based at $v . G^{\prime}$ is connected if and only if the local group at every vertex v is equal to Γ.

The Degree-Diameter Problem (DDP)

- Construct the largest possible network (or graph) with a given maximum degree Δ, and a given diameter D (Elspas, 1964)

- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of Δ and D
- Main research directions:

The Degree-Diameter Problem (DDP)

- Construct the largest possible network (or graph) with a given maximum degree Δ, and a given diameter D (Elspas, 1964)
- $N_{\Delta, D} \leq 1+\Delta+\Delta(\Delta-1)+\cdots+\Delta(\Delta-1)^{D-1}$ (Moore bound)
- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of Δ and D
- Main research directions:

The Degree-Diameter Problem (DDP)

- Construct the largest possible network (or graph) with a given maximum degree Δ, and a given diameter D (Elspas, 1964)
- $N_{\Delta, D} \leq 1+\Delta+\Delta(\Delta-1)+\cdots+\Delta(\Delta-1)^{D-1}$ (Moore bound)
- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of Δ and D
- Main research directions:

The Degree-Diameter Problem (DDP)

- Construct the largest possible network (or graph) with a given maximum degree Δ, and a given diameter D (Elspas, 1964)
- $N_{\Delta, D} \leq 1+\Delta+\Delta(\Delta-1)+\cdots+\Delta(\Delta-1)^{D-1}$ (Moore bound)
- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of Δ and D
- Main research directions:
- Obtain sharper upper bounds
- Construct larger graphs

The Degree-Diameter Problem (DDP)

- Construct the largest possible network (or graph) with a given maximum degree Δ, and a given diameter D (Elspas, 1964)
- $N_{\Delta, D} \leq 1+\Delta+\Delta(\Delta-1)+\cdots+\Delta(\Delta-1)^{D-1}$ (Moore bound)
- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of Δ and D
- Main research directions:
- Obtain sharper upper bounds
- Construct larger graphs

The Degree-Diameter Problem (DDP)

- Construct the largest possible network (or graph) with a given maximum degree Δ, and a given diameter D (Elspas, 1964)
- $N_{\Delta, D} \leq 1+\Delta+\Delta(\Delta-1)+\cdots+\Delta(\Delta-1)^{D-1}$ (Moore bound)
- Moore graphs (i.e. graphs attaining the Moore bound) only exist for a few combinations of Δ and D
- Main research directions:
- Obtain sharper upper bounds
- Construct larger graphs

Largest Known Graphs (combinatoricswiki.org)

$d k$	2	3	4	5	6	7	8	9	10
3	10			70	132	196	336	600	1250
4		41	96	364	740	1320	3243	7575	17703
5		72	210	624	2772	5516	17030	57840	187056
6	32	110	390	1404	7917	19383	76461	307845	1253615
7	50	168	672	2756	11988	52768	249660	1223050	6007230
8	57	253	1100	5060	39672	131137	734820	4243100	24897161
9	74	585	1550	8200	75893	279616	1686600	12123288	65866350
10	91	650	2286	13140	134690	583083	4293452	27997191	201038922
11	104	715	3200	19500	156864	1001268	7442328	72933102	600380000
12	133	786	4680	29470	359772	1999500	15924326	158158875	1506252500
13	162	851	6560	40260	531440	3322080	29927790	249155760	3077200700
14	183	916	8200	57837	816294	6200460	55913932	600123780	7041746081
15	186	$\begin{gathered} 1 \\ 215 \end{gathered}$	$\begin{gathered} 11 \\ 712 \end{gathered}$	76518	$\begin{gathered} 1417 \\ 248 \end{gathered}$	8599986	90001236	1171998164	$\begin{aligned} & 10012349 \\ & 898 \end{aligned}$
16	198	$\begin{gathered} 1 \\ 600 \end{gathered}$	$\begin{aligned} & 14 \\ & 640 \end{aligned}$	$\begin{aligned} & 132 \\ & 496 \end{aligned}$	$\begin{gathered} 1771 \\ 560 \end{gathered}$	$\begin{gathered} 14882 \\ 658 \end{gathered}$	$\begin{aligned} & 140559 \\ & 416 \end{aligned}$	2025125476	$\begin{aligned} & 12951451 \\ & 931 \end{aligned}$
17	274	$\begin{aligned} & 1 \\ & 610 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & 040 \end{aligned}$	$\begin{aligned} & 133 \\ & 144 \\ & \hline \end{aligned}$	$\begin{aligned} & 3217 \\ & 872 \end{aligned}$	$\begin{aligned} & 18495 \\ & 162 \end{aligned}$	$\begin{aligned} & 220990 \\ & 700 \end{aligned}$	3372648954	$\begin{aligned} & 15317070 \\ & 720 \end{aligned}$
18	307	$\left\lvert\, \begin{aligned} & 1 \\ & 620 \end{aligned}\right.$	$\begin{aligned} & 23 \\ & 800 \end{aligned}$	$\begin{aligned} & 171 \\ & 828 \\ & \hline \end{aligned}$	$\begin{aligned} & 4022 \\ & 340 \end{aligned}$	$\begin{aligned} & 26515 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 323037 \\ & 476 \end{aligned}$	5768971167	$\begin{aligned} & 16659077 \\ & 632 \end{aligned}$
19	338	$\begin{aligned} & 1 \\ & 638 \end{aligned}$	$\begin{aligned} & 23 \\ & 970 \end{aligned}$	$\begin{aligned} & 221 \\ & 676 \end{aligned}$	$\begin{aligned} & 4024 \\ & 707 \end{aligned}$	$\begin{aligned} & 39123 \\ & 116 \end{aligned}$	$\begin{aligned} & 501001 \\ & 000 \end{aligned}$	8855 580344	$\begin{aligned} & 18155097 \\ & 232 \end{aligned}$
20	81	$\begin{aligned} & 1 \\ & 958 \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \\ & 952 \\ & \hline \end{aligned}$	$\begin{aligned} & 281 \\ & 820 \\ & \hline \end{aligned}$	$\begin{aligned} & 8947 \\ & 848 \end{aligned}$	$\begin{aligned} & 55625 \\ & 185 \\ & \hline \end{aligned}$	$\begin{aligned} & 762374 \\ & 779 \end{aligned}$	$\begin{aligned} & 12951451 \\ & 931 \end{aligned}$	$\begin{aligned} & 78186295 \\ & 824 \end{aligned}$

Relative contribution of different techniques

(1) Voltage assignment (analytic and computer-based) - 53%
(2) Graph compounding - 15\%
(3) Polarity graphs of generalized polygons-12\%
(9) Other computer-based techniques-9\%
(5) Moore graphs and others - 11\%

Relative contribution of different techniques

(1) Voltage assignment (analytic and computer-based) - 53%
(2) Graph compounding-15\%
(8) Polarity graphs of generalized polygons - 12%
(9) Other computer-based techniques - 9%
(6) Moore graphs and others - 11\%

Relative contribution of different techniques

(1) Voltage assignment (analytic and computer-based) - 53%
(2) Graph compounding-15\%
(3) Polarity graphs of generalized polygons-12\%

- Other computer-based techniques - 9\%
(3) Moore graphs and others - 11%

Relative contribution of different techniques

(1) Voltage assignment (analytic and computer-based) - 53%
(2) Graph compounding-15\%
(3) Polarity graphs of generalized polygons-12\%
(4) Other computer-based techniques - 9%
(5) Moore graphs and others - 11\%

Relative contribution of different techniques

(1) Voltage assignment (analytic and computer-based) - 53%
(2) Graph compounding-15\%
(3) Polarity graphs of generalized polygons-12\%
(4) Other computer-based techniques-9\%
(5) Moore graphs and others - 11%

Random voltage search

Choose a base graph G and a family of groups Ω, and initialize MAX;
Label the arcs of a BFS spanning tree of the base graph G with the identity element;
for every unexplored group Γ in Ω do for i:=1 to MAX do begin generate a random voltage assignment α; compute the girth and diameter of G^{\prime};
if diameter $\leq k$ then begin save Γ and α; break;
end;
end;

Construction of large general graphs

- The 'less abelian' a group is, the better
- The groups that have been used more extensively are $\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}$, $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m}\right) \rtimes_{r} \mathbb{Z}_{n}$, and $\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right) \rtimes\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group Γ is perfect if it equals its commutator (or derived) subgroup $[\Gamma, \Gamma]$. E.g. $S L(2,5)$

Construction of large general graphs

- The 'less abelian' a group is, the better
- The groups that have been used more extensively are $\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}$, $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m}\right) \rtimes_{r} \mathbb{Z}_{n}$, and $\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right) \rtimes\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group 「 is perfect if it equals its commutator (or derived) subgroup [Г, Г]. E.g. SL(2, 5)

Construction of large general graphs

- The 'less abelian' a group is, the better
- The groups that have been used more extensively are $\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}$, $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m}\right) \rtimes_{r} \mathbb{Z}_{n}$, and $\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right) \rtimes\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group Γ is perfect if it equals its commutator (or derived) subgroup [Г, Г]. E.g. $\operatorname{SL}(2,5)$

Construction of large general graphs

- The 'less abelian' a group is, the better
- The groups that have been used more extensively are $\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}$, $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{m}\right) \rtimes_{r} \mathbb{Z}_{n}$, and $\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right) \rtimes\left(\mathbb{Z}_{m} \rtimes_{r} \mathbb{Z}_{n}\right)$
- The method is expected to give better results with simple groups, and other non-solvable groups (e.g. perfect groups)
- A group Γ is perfect if it equals its commutator (or derived) subgroup [Г, Г]. E.g. $\operatorname{SL}(2,5)$

GAP functionality for graphs

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

GAP functionality for graphs

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

GAP functionality for graphs

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

GAP functionality for graphs

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

GAP functionality for graphs

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

GAP functionality for graphs

- Package GRAPE, by Leonard Soicher
- Supports directed graphs with loops
- Does not support multiple edges (or multiple loops)
- Does not support edge labels
- Makes heavy use of the automorphism group of the graph
- Calls nauty

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter: Computes the Cayley digraph of a given group 「 that gives the smallest diameter, among all generating sets with given cardinality k
- Function UndirectedCayDiameter: the same, for undirected Cayley graphs
- Various input/output functions

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter: Computes the Cayley digraph of a given group 「 that gives the smallest diameter, among all generating sets with given cardinality k
- Function IndirectedCayDiameter the same, for undirected Cayley graphs
- Various input/output functions

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter: Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
- Function UndirectedCayDiameter: the same, for undirected Cayley graphs
- Various input/output functions

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter: Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
- Function UndirectedCayDiameter. the same, for undirected Cayley graphs
- Various input/output functions

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter: Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
- Function UndirectedCayDiameter: the same, for undirected Cayley graphs
- Various input/output functions

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter: Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
- Function UndirectedCayDiameter: the same, for undirected Cayley graphs
- Various input/output functions

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
- Function UndirectedCayDiameter: the same, for undirected Cayley graphs
- Various input/output functions

Our implementation (EULER)

- Graph data structure: Adjacency list
- Group specification
- Functions:
- Traversals: BFS and DFS
- Function Diameter, to compute the diameter of a directed graph
- Function Lift, to perform the voltage assignment construction
- Function DirectedCayDiameter. Computes the Cayley digraph of a given group Γ that gives the smallest diameter, among all generating sets with given cardinality k
- Function UndirectedCayDiameter: the same, for undirected Cayley graphs
- Various input/output functions

Input/output functions

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formais

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Oiner possible formais

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats

- Sage ?
- Mathematica?
- R ?

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats

- Sage?
- Mathematica?
- R ?

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats

- Sage ?
- Mathematica?

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats

- Sage ?
- Mathematica?
- R ?

Input/output functions

- Euler to/from Matgraph's SGF
- Euler to/from Pajek's .NET
- Euler to/from Gephi
- Other possible formats

- Sage ?
- Mathematica?
- R ?

Network layout with Gephi

Example 1

Recall Example 1

Gamma:= CyclicGroup (3);
LGamma:= List (Gamma);
vgrafo:= [[[2], [LGamma[1]]],
[[1, 2], [LGamma[1], LGamma[2]]]];
$[$ [4], [5], [6], [1,5], [2,6], [3,4]]

Future extensions

金

- Improve data structures
- Functions for:
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

Future extensions

金

- Improve data structures
- Functions for:
- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assianment that produces a lift of minimal diameter
- Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

Future extensions

全

- Improve data structures
- Functions for:
- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assignment that produces a lift of minimal diameter
- Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

Future extensions

全

- Improve data structures
- Functions for:
- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assignment that produces a lift of minimal diameter
- Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

Future extensions

金

- Improve data structures
- Functions for:
- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assignment that produces a lift of minimal diameter
- Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

Future extensions

全

- Improve data structures
- Functions for:
- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assignment that produces a lift of minimal diameter
- Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

Future extensions

全

- Improve data structures
- Functions for:
- Basic graph operations (girth, connectivity, graph products, etc.)
- Estimating the diameter of a large directed non-symmetric graph
- Find the voltage assignment that produces a lift of minimal diameter
- Implement the random voltage search
- Adapt functions to different group specifications (permutation groups, fp groups, pc groups, etc.)

An alternative data structure

```
Gamma:= CyclicGroup(3);
LGamma:= List(Gamma);
nverts:= 2;
narcs:= 4;
LArcs:= [ [1,2], [2,1], [2,2] ];
alpha:= [ LGamma[1], LGamma[1], LGamma[2] ];
```


Auxiliary functions (in GAP 3)

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

Auxiliary functions (in GAP 3)

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

Auxiliary functions (in GAP 3)

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

Auxiliary functions (in GAP 3)

- Knuth-Bendix completion procedure for string-rewriting systems: Given a finite monoid presentation, convert it to a complete (confluent) presentation.
- Given a complete presentation, multiply two elements (reduced words)
- Compute the order of a finitely-presented group (monoid) given by a confluent presentation
- Generate confluent presentations for some classes of groups (symmetric groups, alternating groups, finite Coxeter groups, etc.)

Complete presentation of A_{5}

```
a:=AbstractGenerator("a");
b:=AbstractGenerator("b") ;
c:=AbstractGenerator("c") ;
```

Gens:=[a,b, c];
Rels: $=$ [[a^3, IdWord], [b^2, IdWord], [$\left.c^{\wedge} 2, ~ I d W o r d\right]$,
$\left[b * a * b, \quad a^{\wedge} 2 * b * a^{\wedge} 2\right], \quad\left[b * a^{\wedge} 2 * b, \quad a * b * a\right]$,
$\left[c * a, \quad a^{\wedge} 2 * c\right], \quad[c * b * c, \quad b * c * b]$,
$\left.\left[\mathrm{c} * \mathrm{~b} * \mathrm{a} * \mathrm{c}, \quad \mathrm{b} * \mathrm{c} * \mathrm{~b} * \mathrm{a}^{\wedge} 2\right], \quad\left[\mathrm{c} * \mathrm{~b} * \mathrm{a}^{\wedge} 2 * \mathrm{c}, \quad \mathrm{b} * \mathrm{c} * \mathrm{~b} * \mathrm{a}\right]\right] ;$

GAP-4 translation

```
F:= FreeGroup("a", "b", "C");
a:= F.1;
b:= F.2;
c:= F.3;
IdWord:= One(F);
```

Rels: $=$ [[a^3, IdWord], [b^2, IdWord], [$c^{\wedge} 2$, IdWord],
$\left[b * a * b, \quad a^{\wedge} 2 * b * a^{\wedge} 2\right], \quad\left[b * a^{\wedge} 2 * b, \quad a * b * a\right]$,
$\left[c * a, \quad a^{\wedge} 2 * c\right], \quad[c * b * c, b * c * b]$,
$\left.\left[c * b * a * c, \quad b * c * b * a^{\wedge} 2\right], \quad[c * b * a \wedge 2 * c, \quad b * c * b * a]\right] ;$

For more details

B J.L.Gross and T.W.Tucker: Topological Graph Theory. John Wiley \& Sons, 1987.
\& L.H. Soicher: "Computing with graphs and groups" In Topics in Algebraic Graph Theory (L.W. Beineke and R.J. Wilson, eds).
Cambridge Univ. Press, 2004, pp. 250-266.
Q L.H. Soicher: GRAPE Manual.
http://www.gap-system.org/Packages/grape.html.

For more details

J.L.Gross and T.W.Tucker: Topological Graph Theory. John Wiley \& Sons, 1987.
-
L.H. Soicher: "Computing with graphs and groups".

In Topics in Algebraic Graph Theory (L.W. Beineke and R.J. Wilson, eds).
Cambridge Univ. Press, 2004, pp. 250-266.
Soicher: GRAPE Manual.

For more details

J.L.Gross and T.W.Tucker: Topological Graph Theory. John Wiley \& Sons, 1987.
θ
L.H. Soicher: "Computing with graphs and groups". In Topics in Algebraic Graph Theory (L.W. Beineke and R.J. Wilson, eds).
Cambridge Univ. Press, 2004, pp. 250-266.
∇
L.H. Soicher: GRAPE Manual.
http://www.gap-system.org/Packages/grape.html.

END

