NormalizInterface

Christof Söger

FB Mathematik/Informatik Universität Osnabrück csoeger@uos.de

Aachen, 25.08.2014

Normaliz

Developed by W. Bruns, B. Ichim, T. Römer, C. Söger.

- Open source software (GPL)
- written in C++ (using Boost and GMP/MPIR)
- parallelized with OpenMP

DSNABRÜCK

UNIVERSITÄT

- runs under Linux, MacOs and MS Windows
- C++ library libnormaliz
- file based interfaces for Singular, Macaulay 2 and Sage
- C++ level interfaces to CoCoA, polymake, Regina and GAP
- GUI interface jNormaliz

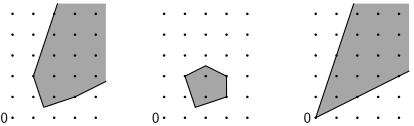
Normaliz has found applications in commutative algebra, toric geometry, combinatorics, integer programming, invariant theory, elimination theory, mathematical logic, algebraic topology and even theoretical physics.

UNIVERSITÄT

Rational Polyhedra

Definition

A (rational) polyhedron P is the intersection of finitely many (rational) halfspaces. If it is bounded, then it is called a polytope. If all the halfspaces are linear, then P is a cone.



Input to Normaliz by

- generators: vertices and/or rays, or
- constraints: homogeneous or inhomogeneous equations, inequalities, congruences.

Assume C is a pointed cone.

Theorem (Gordan's Lemma)

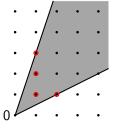
Let $C \subset \mathbb{R}^d$ be a rational cone. Then $C \cap \mathbb{Z}^d$ is an affine monoid, *i.e.* a finitely generated submonoid of \mathbb{Z}^d .

Normaliz computes the unique minimal finite system of generators of $M = C \cap \mathbb{Z}^d$, the Hilbert basis

Hilb(M).

Normaliz has two algorithms for Hilbert bases:

- the original Normaliz algorithm,
- a variant of an algorithm due to Pottier (dual algorithm).
- $(\mathbb{Z}^d \text{ can be replaced by a sublattice } L.)$



The tasks of Normaliz: Hilbert series

A grading on M is a surjective \mathbb{Z} -linear form deg : $gp(M) \to \mathbb{Z}$ such that deg(x) > 0 for $x \in M$, $x \neq 0$

The Hilbert (or Ehrhart) function is given by

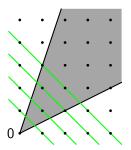
 $H(M,k) = \#\{x \in M : \deg x = k\}$

and the Hilbert (Ehrhart) series is

OSNABRÜCK

UNIVERSITÄT

$$H_M(t) = \sum_{k=0}^{\infty} H(M,k)t^k.$$



Theorem (Hilbert-Serre, Ehrhart)

- H_M(t) is a rational function
- H(M, k) is a quasi-polynomial for $k \ge 0$

In development with Sebastian Gutsche and Max Horn.

- (almost) full access to libnormaliz
- the GAP object NmzCone encapsulates a libnormaliz cone
- first interactive interface to libnormaliz
- still work in progress

DEMO